User manual for the Optimus Sound Level Meters #### About this manual - The instructions in this user manual refer to the operation of Cirrus Research plc **optimus** sound level meters with version 2.9 or higher of the firmware. - The instruments described in this manual are the **optimus** yellow (CR:150 series), **optimus** red (CR:160 series), **optimus** green (CR:170 series) and **optimus** purple (CR:190 series). - Some functions described in this manual are only available on red or green versions of the **optimus** sound level meters. Where functions are applicable to only some instruments in the range, this will be clearly indicated in the text. - In this manual, "**optimus**" is used as a general reference for the **optimus** sound level meters and "calibrator" is used as a general reference for an acoustic calibrator. - This manual describes the recommended usage of the **optimus**. Any warnings will be indicated by - The additional information required for testing in accordance with IEC 61672 is provided as a supplementary document, **Optimus Sound Level Meters** Technical Data Part B, which is available for download at www.cirrusresearch.co.uk/library/user-manuals/ - It is not possible to change the way that the instrument measures through the software or firmware. Any legal metrology aspects of the instrument cannot be affected by any changes made in the instrument. - The Common Specifications section on page 31 defines which standards relate to the different functions available in the instruments. Additional approvals and certifications may apply to the instruments and these will be listed in the Appendices. - More detailed explanations of the audio recording templates, tonal noise detection and the repeat measurement timers are available to download from the Cirrus website at www.cirrusresearch.co.uk/library/user-manuals/ #### Copyright Copyright © Cirrus Research plc 2010-2017 All rights reserved. You may re-use this document/publication (not including the Cirrus Research plc logo and other product logos) free of charge in any format for research, private study or internal circulation within an organisation. You must re-use it accurately and not use it in a misleading context. You must not modify text, images or illustrations in any way. The material must be acknowledged as Cirrus Research plc copyright and you must give the title of the source document/publication. Where any third-party copyright material is identified you will need to obtain permission from the copyright holders concerned. #### **Trademarks** Cirrus Research plc, the Cirrus Research plc Logo, doseBadge, DOSEBADGE, **optimus**, the NoiseTools Logo and the Noise-Hub Logo are either registered trademarks or trademarks of Cirrus Research plc in the United Kingdom and/or other countries. Microsoft and Windows are registered trademarks of Microsoft, Inc. All other trademarks acknowledged. ### **Updates** In the interests of continuous product improvement, Cirrus Research plc reserves the right to make changes to product specifications without notice. To understand the latest updates that have been implemented into this product and to download the most current version of this user manual, visit our web site at www.cirrusresearch.co.uk lssue 2.4 December 2017 optimus/12/17/2.4 EN # optimus sound level meter user manual | Introduction | 7 | |---|----| | First Use | 9 | | Inserting the batteries | 11 | | Setting the Clock | 12 | | Calibration | 13 | | Making a measurement | 15 | | Operations in more detail | 16 | | NoiseTools | 16 | | Keypad and Controls | 16 | | Connectors | 17 | | Screen saver | 18 | | Display | 18 | | Audio Recording | 20 | | Timers | 21 | | Back Erase/Pause | 21 | | Memory | 22 | | Restore Factory Settings | 22 | | Windshield | 23 | | Getting to know your optimus – features and capabilities | 23 | | Views | | | High Level Noise Measurement | 26 | | Menus | 27 | | Additional Information | 30 | | Appendices | 31 | | IEC 61672 test data | 31 | | Common Specifications | 31 | | Views | 34 | | Stored Measurements | 39 | | Electrical Outputs | 41 | | Acoustic Calibrator Information | 44 | | Calibrating a Sound Level Meter. | 44 | | Changing the Battery | 45 | | Specifications | 46 | | Technical Information | 46 | | Declarations | 48 | | EU Declaration of Conformity | 48 | | Product Guarantee & Extended Warranty | 49 | | Cirrus Research Offices | 51 | # Introduction Welcome to your **optimus** sound level meter. This next-generation instrument from Cirrus Research plc is powerful yet simple to use, and is capable of a wide range of noise measurement functions. The advanced technology used in the **optimus** instruments does not get in the way of you making effective noise measurements, and the large, clear screen makes it easy to read the comprehensive information on the display. The **optimus** makes your noise measurements simple: #### Measure everything and forget nothing One of the key aims of the **optimus** instruments is to give you a sound level meter that is as simple to use as possible whilst providing the very highest level of performance and function. You cannot forget to measure the right function as everything is measured at the same time. For example, if you've chosen the Fast time weighting View Option, the **optimus** will still measure Slow and Impulse at the same time. You can choose another time weighting View Option from the menu, and then see real-time data or review stored measurements using the new parameters. This applies to all other noise parameters (excluding Dose - for further details, see page 25). The **optimus** measures them all, and you can choose your View Option to review the data. # VoiceTag audio recording The data logging versions of the **optimus** feature the VoiceTag audio recording function. This allows you to record notes and information before a measurement by simply speaking into the microphone, then play them back later in the NoiseTools software. You can save time when making measurements, and remove the need to carry a notepad and store any important information about your measurements. #### A single measurement range By using the very latest in digital technology combined with 40 years' experience in designing sound level meters, we have given the **optimus** instruments the ability to measure from 20 to 140 dB(A) and up to 143 dB(C) Peak in a single range. #### A clear, simple display of the information you need The display used on the **optimus** is a high resolution colour OLED type. This gives a clear, bright display that is easy to read in all light conditions as well as allowing us to use colour to show specific functions and information. All of the information that you need is shown clearly on the screen with the most useful function, for example the Leq in the Leq View, shown in large white text. This makes it easy for you to see the information that is important at a glance. #### A modular design to future proof your investment The **optimus** instruments are based around a modular design which allows you to upgrade and update your instrument if and when the time arises. This means that your instrument will meet your current and future needs, no matter what you need to measure. # Audio Recording during measurements The **optimus** green instruments can record and store audio data (the actual sounds heard by the microphone) during a measurement. This data can be downloaded along with the noise measurements for analysis and review and can be used to identify the source of the noise. Audio recordings can be started either manually or automatically using a set of triggering rules. # First Use Your **optimus** sound level meter has been shipped in reusable packaging that should be retained for safe shipment when returning the instrument for calibration or servicing. All **optimus** meters come with the following standard accessories: - MV:200 Microphone Preamplifier - Microphone capsule (attached to the preamplifier) - Wrist - 4 x AA batteries - User Manual - Product CD (with NoiseTools software and documentation) - Windshield You may have other accessories, depending on your package. Please check for damage or missing items before using your **optimus**. All **optimus** instruments are shipped with the removable preamplifier separated from the body. When connecting the preamplifier, please take great care to only turn the locking ring at the base. Twisting the preamplifier body is likely to cause serious damage. The microphone capsule is also delicate, and care needs to be taken when handling. Damage caused by misuse is not covered by the warranty for the instrument. To connect or remove the preamplifier, please follow the diagram: # **Inserting the batteries** Your **optimus** is powered by 4 x AA batteries (also called MN1500 or LR6). We recommend that you use alkaline or lithium batteries to give the best performance. Remove the battery cover by loosening the captive locking screw (as shown below). Please look carefully at the diagram inside the battery compartment showing the correct polarity. After inserting the batteries in the correct orientation, replace the cover and tighten the locking screw. The instrument is switched on by pressing and releasing the On/Off button on the left hand side of the case. After the boot screen, your **optimus** will display the last View you used. ### Setting the Clock The **optimus** stores the date and time with all the measurements to help with analysing the results and ensure the data accuracy. It is important to check that the instrument's clock is correctly set before starting a measurement session. It is visible on the top-right corner of the screen. To set the clock, press the 'Menu' button after the instrument has been turned on. Select the 'Set clock' menu and follow the instructions on
screen. Please note that the clock might need to be set again if the instrument is stored without batteries for a prolonged period of time. #### Calibration All noise measuring instruments should be calibrated before each use, because the microphone is susceptible to minor damage from even small knocks. The calibration applies corrections (if needed) to ensure that your measurements are as accurate as possible. Calibration should also be carried out at the end of a measurement session to make sure that nothing has happened to the instrument during the session. To calibrate your **optimus**, carefully push the microphone into the cavity at the end of the calibrator. Ensure the microphone is fully inserted into the cavity and is past the 'O' ring seals. Ensure that the small bleed hole next to the microphone cavity on the calibrator is not blocked, as this could cause damage to the microphone. Take care not to use a twisting motion when pushing the microphone into the calibrator, as this is likely to cause damage to the preamplifier (as described earlier in this chapter). Press the 'On' button on the end of the calibrator. Press the calibrate button on the **optimus**. The instrument will measure the sound level from the acoustic calibrator to determine if it is within the required tolerance and levels. The calibration level must be stable to within ± 0.075 dB for 5 consecutive seconds for the calibration to be successful. When the calibration is completed, the **optimus** will display the level along with the correction or adjustment made. The **optimus** is preset with the correction values needed for Cirrus Research microphone capsules, so no manual adjustment is required. The calibration level you should expect is 93.7 dB. Refer to page 44 for detailed operating information for the CR:514 and CR:515 Acoustic Calibrators. # Making a measurement Press the Start key to begin recording (on data logging intruments with the VoiceTag function switched on, the VoiceTag screen will show – press skip to move on without recording a note). Your **optimus** is now measuring and recording noise data for all available functions, regardless of your selected View, and the red animated Running icon will show in the top left of the information bar. The measurement can be paused by pressing the Pause/Stop soft key. Press once to pause/back erase and twice to stop, or alternatively press and hold for three seconds to stop. The Pause/Back Erase function is only available if this has been enabled in the instrument menu (more information on page 21). To stop the measurement, press the Stop key. The instrument will change from measurement to review mode, and your data is stored and ready to review and download. For instruments without data logging, only the last recorded measurement is available for review. # Operations in more detail Please note: from this chapter on, the manual describes capabilities which are available on different models within the **optimus** range. some models). If you are unsure which capabilities your **optimus** has, you can check on the instrument by looking at the General View / page 5 (and 6 on #### **NoiseTools** All **optimus** instruments are delivered with a copy of the NoiseTools software which can be used to configure the instrument (some options are only configurable within NoiseTools and not on the instrument – it will be made clear in the text where this is the case). NoiseTools is also a powerful environment for storing, analysing and organising your data, and produces reports for publication. VoiceTag notes and audio recordings can only be played back through NoiseTools. # **Keypad and Controls** The **optimus** is controlled via the four arrow keys (up, down, left and right) and three soft keys, which change in function depending upon the mode that the instrument is in. The soft key function is shown above the button on the display. The left and right keys move between the Views and the up and down keys move between the pages of each View. The ambient light sensor on the front of the instrument will illuminate the keypad and adjust the brightness of the display automatically when the light level falls. #### **Connectors** The connectors used by the **optimus** to communicate with a PC and NoiseTools are at the bottom of the instrument under a protective cover. The **optimus** can be powered via the multi-pin connector on the bottom of the instrument. Power can be connected using a ZL:171 **optimus** power input cable (2.1 mm Power Jack, 2 m) or via ZL:176 **optimus** 12 V Battery pack cable. The **optimus** can also be powered from an external source, such as a USB connection to a PC or via a USB power supply. An AC output is available on the **optimus** via the 3.5 mm jack socket. The output is unweighted and the output level can be adjusted using the options in the AC Out menu. This output can be used with external instrumentation. See page 41 for details of the electrical outputs. #### Screen saver If no keys are pressed for 6 minutes the display will dim to preserve battery and screen life, and reduce power consumption. After 30 minutes with no key presses the display will switch off completely and keypad flashes every two seconds to show that the instrument is powered. The screen dim and screen saver functions will occur during measurements as well as when not measuring. Press any key to restore the display. The time intervals for the screen dim and screen saver are configurable in NoiseTools. #### **Display** The **optimus** uses a high resolution colour OLED screen to show a clear and easy to read display of all the information you need. #### Information Bar The information bar shows icons when functions are active. Examples of the icons are shown in the diagram above. #### **Navigation Bar** The navigation bar shows which View or Menu you are looking at. #### Measurement Display In addition to primary and secondary functions, the display features an Analog Bar on the left of the screen, which shows real time A-weighted sound level. At the bottom of the screen is the Page information for your View, ie 1 of 3. #### Status Bar When the **optimus** is not measuring, the status bar shows the date and time. When it is measuring, it shows the elapsed time and in Review mode it shows the measurement number and the total number of measurements stored. #### Overload and Under-Range Indication Overload is indicated by the word 'overload' and Under-Range is indicated by the word 'under range' (in the chosen language) on the display. On the Sound Level View and Leq View the indicators are situated beneath and to the left of the large number. When a measurement is not in progress, the indicator is shown for at least 1 second, so that very short transient overload or under-range conditions are visible to the operator. When a measurement is in progress, the overload indicator stays on until the measurement is stopped or reset. In some circumstances the overload and under range indicators will be shown simultaneously. In this case the text will be abbreviated to save space. Note that if any displayed decibel value on the Sound Level View or Leq View is below 14.0 dB, the value will be replaced by dashes ('---'). These levels are typically below the noise floor of the microphone capsule and so will only be encountered during electrical testing. #### 'Bluescreen' Under rare circumstances, when the **optimus** encounters a condition it cannot recover from, a 'bluescreen' error message will show with an error code. If this should happen to your **optimus**, please make a note of the code so the engineers at Cirrus Research can diagnose your problem accurately. After writing down the code, pressing the right key will clear the screen and the instrument can be used as normal. #### **Battery indicator** The status of the batteries is shown in the Battery Level Indicator. When the batteries need replacing, the indicator will turn red. #### Low Battery Indication while switching on If the start-up screen flashes quickly when you press the on button, the batteries have insufficient power to start and need changing. #### **Audio Recording** Audio recording can be started manually using the Audio soft key or automatically using the Audio Triggers. This starts the **optimus** recording raw WAV data at a quality which can be set in the Menu (Standard or Studio). Details of the Audio Triggers can be found in **Technical Note 28 - Audio Recording** with the optimus green sound level meters. Please refer to the Cirrus Research plc website at www.cirrusresearch.co.uk/library/user-manuals/. Pressing the audio key again stops the recording. There is no maximum duration of an audio recording set by default, but it can be changed in NoiseTools, and the parameters for the Audio Triggers can be configured in NoiseTools. The audio recording includes a 10 seconds back buffer (on the Standard quality setting). When triggering a recording manually, it's very difficult to record the beginning of a sound that catches your attention. The back buffer will cover the time it takes you to respond and press 'record'. 10 seconds is the default duration, which can be changed in NoiseTools. The Time History display and Analog bar turn blue when audio recording is running and revert to **green** when it is stopped. Starting and stopping audio recording during a measurement does not affect the noise measurement data being recorded. Please note, VoiceTags are recorded BEFORE the measurement starts and are for spoken notes only, not for analysis of recorded sounds. #### **Timers** The single and repeat timers allow you to make precisely timed measurements over pre-set or custom defined durations, which are set on the instrument using the Storage Options Menu (see next chapter). The repeat timer allows measurements to be stopped and started automatically over a long
period of time. The **optimus** can still be stopped and started manually when the repeat timer is active. The repeat timer is synchronised to the real time clock, so if you choose a 30 minute duration the measurement will begin on the hour and at 30 minutes past. When the measurement ends, a new one will begin and last for the next 30 minute interval. If the **optimus** is paused when an automatic timer begins, the new timed measurement will also be paused. The single timer allows measurements to automatically stop after a pre-defined period of time. If you set the single timer duration to 15 minutes and enable the single timer option, then all measurements will automatically stop after 15 minutes. (Firmware version 2.8 and above) The single timer can also be set using the NoiseTools software to halt when the measurement is paused. This allows a measurement to have an exact 'non-paused' duration. For example, if a you set the single timer to 2 minutes and pause the measurement for 30 seconds, the measurement will automatically stop after 2 minutes and 30 seconds instead of after 2 minutes. #### Back Erase/Pause #### Pause The **optimus** sound level meters provide Pause and Back Erase function which can be used during a measurement. When the Pause function is enabled in the menu, the Stop button is replaced by the Pause/Stop button. This also enables the Back Erase function, the duration of which can be set in the menu. Please note that the measurement will automatically resume after 5 minutes in pause mode. #### **Back Erase** The Back Erase function allows a section of the measurement to be removed from the data used to calculate the overall values. An example of this would be if, during the measurement of cars on a road, a large truck passed by the measurement location. If the intention was only to measure cars, the truck can be excluded from the overall measurement data by pressing the Pause button and then using the Back Erase to remove a preset section of noise. The time that the pause button was pressed, along with the Back Erase duration, will be excluded from the calculation of the overall noise values such as the Leq, Lmin, Lmax, LPeak, and the 1:1 and 1:3 Octave Band overall values. The duration of the Back Erase can be set to between 1 and 30 seconds using the menu and can also be configured in the NoiseTools software. If the Pause function is disabled, the Back Erase function is also disabled. #### Memory The **optimus** has a 4 GB memory as standard. This is partitioned into two sections, one to record time history and one for audio (VoiceTags and audio recordings). The space allocated to each can be configured in NoiseTools. The free space in the memory is shown in the General View as days or hours available for both time history and audio. When either partition is full, the **optimus** will overwrite the oldest data in that partition. To clear the memory and permanently delete all stored data, choose the 'Clear Memory' Menu page and follow the instructions on screen. Before permanently erasing the data, you will be asked to press 'OK' to confirm. # **Restore Factory Settings** This is in the Advanced Options Menu, and restores the **optimus** to the default options for all user-definable settings in the Menus, and clears the calibration offset. For settings such as 'language' where there is no default, the **optimus** will return to the option it was shipped with. Follow the instructions on the screeen, and press 'OK' to confirm. This does not delete any stored measurements. #### Windshield The **optimus** can be used with a UA:237 90 mm foam windshield which will reduce the noise levels generated by air turbulence over the microphone capsule. It can also help protect the microphone capsule from dust and fluids which can affect the performance of the instrument. # <u>Getting to know your optimus – features and capabilities</u> The **optimus** instruments are designed around a modular structure that allows an instrument to be upgraded and updated with new capabilities (functions), protecting your investment for the future. To check which capabilities your **optimus** has, go to General View / page 5 (and 6 on some models). This will list all the available capabilities. Some options cannot be changed while the **optimus** is measuring, and a message will appear on the screen telling you 'cannot be changed while measuring'. Some menu choices are disabled while measuring, and will appear grey on the screen. #### **Views** The views are accessed by pressing the left and right control keys. The views are available when the **optimus** is measuring, not measuring or in review mode, but the pages available in each mode will differ. #### Not measuring When not measuring, the information shown is live, instantaneous values. #### Measuring When measuring, these live values are still shown, but you are also shown cumulative overall values for the current measurement period. #### **Review Mode** In review mode, the values shown are the overall cumulative values for the meaurement. #### **General View** This shows the status of the instrument with the calibration data, the capabilities that are fitted, the firmware version, the serial numbers of the sound level meter, microphone and preamplifier along with details of the standards that it meets. #### Sound Level View This view shows the Sound Pressure Level or SPL, with the maximum and minimum sound level (Lmax and Lmin) with a choice of A, C and Z frequency weightings. #### Leq View Shows you the Leq, Peak, LAE (SEL) and C-A values with a choice of A, C and Z frequency weightings. The C-A data can be used with the HML method for selecting hearing protection. If the Time Weighting is set to Impulse, the C-A function is replaced by LAeq,I (also known as LAleq). When the instrument is set to the German language, an additional 'Taktmaximal' page is also available. #### 1:1 Octave Band View This view shows the noise levels divided into Octave frequency bands. This can be used to aid in the selection of hearing protection and also for noise control applications. Some models also have the capability to show NR and NC curves and resultant values. #### 1:3 Octave Band View This view shows the noise levels divided into 1:3 Octave (called 'third-octave') frequency bands. This can be used for environmental noise measurements and also for noise control applications. The 1:3 Octave Band View also provides Leg, LF (20 - 200 Hz) and LAeg, LF (20 - 200 Hz). #### Tone detection This is a capability displayed within the 1:3 octave view on some instruments. Instruments with Tone Detection use either the ISO 1996-2:2007 Simplified Method or an improved method developed by Cirrus Research which is based upon the ISO standard, extended to include tones between bands, tones in outer bands and Z-weighting. The ISO method only applies to overall data when measuring or reviewing, whereas the Cirrus Improved Method also applies to instantaneous live values. When a tone is detected, the band is highlighted in blue on both the graphical and numerical pages. The tone detection method can be set to either the Cirrus Improved Method (default setting) or the ISO 1996 method in NoiseTools. For more information, please see **Technical Note 32 - Tonal noise detection with the optimus sound level meters** available for download from the Cirrus Research website at www.cirrusresearch.co.uk/library/user-manuals/. #### Ln View The Ln view shows the statistical Ln values calculated during the measurement. The first seven Ln values are set by default to commonly used values and 8-14 are definable in NoiseTools. Some **optimus** models have a second set which are also 1-7 default, 8-14 user definable. The source data type for the second Ln set is also configurable in NoiseTools. #### Dose View The Dose View gives you a number of different functions depending upon the configuration of the Quick Settings. For the UK option, this View gives you Leq, LEP,d, % Dose and Estimated Dose along with the Projected Exposure Calculator. For the EU option, this View gives you Leq, LEX,8, % Dose and Estimated Dose along with the Projected Exposure Calculator. For all other options the Lavg, TWA, % Dose and Estimated % Dose for two integrators, in addition to ISO (EU), will be shown according to the setting you have chosen. Two custom integrators can also be used, configured in NoiseTools. When chosen, they will be shown in addition to ISO (EU). #### Moving Average View The Moving Average View is available on the CR:19xBE instruments only. The Moving Average View shows a 15 minutes and 60 minutes moving average LAeq along with LASMax and L95 values. The moving average LAeq values are highlighted in colours under certain conditions (see pages 36 and 40 for more details). #### **Environmental View** The Environmental View provides quick access to a set of parameters that are commonly used for environmental noise measurements. The displayed values will differ depending upon the language selection chosen for the instrument. # **High Level Noise Measurement** The **optimus** sound level meters can be used to measure high noise levels (up to 170 dB) with the use of the optional MV:200EH High Level Noise Measurement Option. This consists of a microphone capsule, attenuator and preamplifier, supplied as a complete unit. Switch off the instrument before fitting the MV:200EH. Once the unit is fitted, calibrate the sound level meter as standard. The **optimus** will detect the MV:200EH and adjust the measurement span to 50-170 dB. If the standard microphone and preamplifier are replaced, re-calibrate the **optimus** to return the measurement span to the standard 20-140 dB range. # Menus In the following Menus, different options can be chosen on the **optimus**. To activate a function, press the 'Mark' soft key to put a tick in the square box. You can now
use the up and down soft keys to select your setting, and use the 'OK' soft key to confirm it. In the menu pages, the Status Bar will display information about your current settings and the option you have chosen. The following chapter shows the navigation between the Menus and Pages, and the options available. For more detailed information, please see the appendices. #### Main menu Restart Review stored data Clear memory Advanced options View options Storage options Quick settings Set clock #### Restart Pressing Restart at any time during a measurement resets the elapsed time to zero, and deletes the data for that measurement only. #### **Review Stored data** Using the Left and Right keys navigates between the different Views (see previous chapter for details) and the Up and Down keys navigate between the Pages of each View. The status bar will tell you which measurement you are looking at out of the total (for example Measurement 4 of 9). #### Clear Memory Permanently deletes all stored measurements. #### **Advanced options** #### Restore Factory Settings Restores the instrument back to its original factory setup. #### AC Out On/Off +20 dB Gain High Levels (70-140 dB) or Low Levels (20-90 dB) #### **Audio Quality** Standard Quality (16 bit, 16 kHz) Studio Quality (32 bit, 96 kHz) # Audio Triggers On/Off Default (75 dB LAeq, No minimum time) – User adjustable on the **optimus** Select any user programmed triggering templates #### Pause On/Off Back Erase Duration (0-30 seconds) #### View options #### Set level colours (Analog Bar) Defaults: 80 dB = Yellow, 85 dB = Red User selectable #### Time Weighting Fast, Slow, Impulse #### Adjust Screen Brightness Fixed, Auto (default) #### Set date/time formats dd/mm/yy, mm/dd/yy, dd.mm.yy, dd-mm-yy, yy-mm-dd hh:mm:ss, hh:mm:ss AM/PM #### Language English, Français, Deutsch, Español, Italiano Please note: when changing language, the instrument must be restarted for the change to take effect. #### Storage options #### Time History Rate 2 s, 1 s (default), ½s (500 ms), ¼s (250 ms), 1/8 s (125 ms) 1/16 s (62.5ms), 1/100 s (10 ms) #### VoiceTag On/Off # Single Timer On/Off 1 min, 2 min, 5 min, 15 min, 30 min, 1 h, Custom (default 10 min) #### Repeat Timer On/Off 1 min, 2 min, 5 min, 15 min, 30 min, 1 h, Custom (default 10 min) Day/Evening/Night #### **Quick Settings** - UK - EU - OSHA HC and PEL - OSHA HC and ACGIH - MSHA HC and EC - Custom #### Set Clock Follow the instructions on the screen to set the date and time using the format set in **View Options / Set Date and Time Format** above. # **Additional Information** Additional information on the following topics can be downloaded from the Cirrus Research website. Please visit www.cirrusresearch.co.uk/library/user-manuals/ for the latest versions of these documents. - Technical Note 28 Recording Audio with the **optimus** green (CR:170) sound level meters - Technical Note 29 Timer mode options - Technical Note 30 Project Exposure Calculation - Technical Note 31 NR & NC Curves Other documents may also be available for the **optimus** sound level meters. Please visit the Cirrus Research website for the latest information. # **Appendices** # IEC 61672 test data Technical data for IEC 61672 testing is contained in the **Part B** document which can be downloaded from the Cirrus Research plc website. Visit <u>www.cirrusresearch.co.uk/library/user-manuals/</u> to download the latest information. This chapter of the manual contains the overall specifications for the **optimus** yellow (CR:150), **optimus** red (CR:160), **optimus** green (CR:170) and **optimus** purple (CR:190) sound level meters. # **Common Specifications** | Applicable standards | | | | | |--|---|--|--|--| | IEC 61672-1:2013
Class 1 or Class 2 Group X | CR:151 & CR:152 All versions
CR:161 & CR:162 All versions
CR:171 & CR:172 All versions
CR:191BE, CR:192BE, CR:193BE & CR:194BE | | | | | IEC 61672-1:2002
Class 1 or Class 2 Group X | CR:151 & CR:152 All versions
CR:161 & CR:162 All versions
CR:171 & CR:172 All versions
CR:191BE, CR:192BE, CR:193BE & CR:194BE | | | | | IEC 60651:2001
Type 1 I or Type 2 I | CR:151 & CR:152 All versions
CR:161 & CR:162 All versions
CR:171 & CR:172 All versions | | | | | IEC 60804:2000
Type 1 or Type 2 | CR:161 & CR:162 All versions
CR:171 & CR:172 All versions | | | | | IEC 61252:1993
Personal Sound Exposure
Meters | CR:161 & CR:162 All versions
CR:171 & CR:172 All versions | | | | | ANSI S1.4 -1983 (R2006) | CR:161 & CR:162 All versions
CR:171 & CR:172 All versions | | | | | ANSI S1.43 - 1997 (R2007) | CR:161 & CR:162 All versions
CR:171 & CR:172 All versions | | | | | ANSI S1.25:1991 | CR:161 & CR:162 All versions
CR:171 & CR:172 All versions | | | | | IEC 61260:1995 &
ANSI S1.11-2004
1:1 Octave Band Filters
Class 1 or Class 2 | CR:161C & CR:162C
CR:161D & CR:162D
CR:171A,B C & CR:172A,B,C
CR:193BE & CR:194BE | | | | IEC 61260:1995 & ANSI S1.11-2004 1:3 Octave Band Filters Class 1 or Class 2 CR:171B & CR:172B CR:171C & CR:172C CR:193BE & CR:194BE | Specifications | | | | | |--|--|--|--|--| | Microphone | Class 1 Instruments: MK:224 pre-polarized Free-field 1/2" Condenser Class 2 Instruments: MK:216 pre-polarized Free-field 1/2" Condenser | | | | | Microphone Preamplifier | MV:200 Removable Preamplifier for Class 1 & Class 2 instruments | | | | | Measurement Range | A single measurement range covering 120 dB without any adjustment | | | | | Linear Operating Range | In accordance with IEC 61672:
A-Weighted: 24 to 139 dB
C-Weighted: 30 to 139 dB
Z-Weighted: 45 to 139 dB | | | | | Self-generated noise | <19 dB(A) Class 1, <22 dB(A) Class 2 | | | | | Frequency Weightings | RMS: A, C, & Z Measured Simultaneously
Peak: A, C, & Z Measured Simultaneously | | | | | Time Weightings | Fast, Slow & Impulse Measured Simultaneously | | | | | Display | High resolution OLED (Organic Light Emitting Diode) display with ambient light sensor & illuminated keypad | | | | | Display of | Measured parameters Recalled Measurement Parameters (Data Logging Versions) Battery Level & External Power Connection Overload and Under-range Time & Frequency Weighting Elapsed Measurement Time Instrument status | | | | | Resolution | Display: 0.1 dB (default), 0.01 dB option selectable in NoiseTools Storage: 0.01 dB | | | | | Memory | 4 GB as standard (Data Logging Versions) 32 GB factory fitted option | | | | | Audit Store | For each measurement, the following data is stored into an independent, non-volatile memory for use with the Audit Store function: Start Time, Duration, LAFMax, LAeq, LCPeak, L10, L90, Overload, Calibration data, Diagnostic information. | | | | | Time History Data Rates
(Global settings) | 10 ms, 62.5 ms, 125 ms, 250 ms, 1/2 sec, 1 sec, 2 sec (User selectable) | | | | | VoiceTag Audio Recording | User selectable recording of voice notes before each measurement for download to NoiseTools software (Data Logging Versions) 30 seconds per recording with audio files downloaded with noise measurement information. | |-----------------------------|---| | Size | 283 x 65 x 30 mm | | Weight | 300 g /10 oz | | Batteries | 4 x AA Alkaline | | Battery life | Typically 12 hours with Alkaline Batteries Typically 20 hours with Lithium AA Non-Rechargeable Batteries Battery life is dependent upon the battery type and quality and screen brightness | | External Power | 5 V via USB Socket from PC
12 V via Multi-IO socket | | Tripod Mount | 1/4" Whitworth socket | | Connections | USB Type B to PC
Multi-pin IO for external power & communications
3.5 mm Stereo Jack for AC output | | Case Material | High Impact ABS-PC with soft touch back & keypad | | Temperature | Operating: -10 °C to +50 °C
Storage: -20 °C to +60 °C | | Humidity | Up to 95% RH Non Condensing | | Electromagnetic performance | IEC 61672-1:2013
Except where modified by EN 61000-6-1:2007 & EN 61000-6-3:2007 | | Language options | English, French, German, Spanish and Italian | | Software Support | NoiseTools Download, Configuration & Analysis software as standard. Compatible with Microsoft Windows Vista. 7, 8, 8.1 & 10 (32 bit & 64 bit) | #### Views #### Sound Level View - Sound Level: Lxy where x = A, C, Z; y = F, S, I - Maximum Sound Level: LxyMax where $\mathbf{x} = A, C, Z; \mathbf{y} = F, S, I$ - Minimum Sound Level: LxyMin where $\mathbf{x} = A, C, Z; \mathbf{y} = F, S, I$ - Measurement Run Time #### Leq View - Lxeq where x = A, C, Z - LCPeak, LZPeak, LAPeak - C-A (LCeg-LAeg) - LxE where x = A, C, Z - LAeq,I (also known as LAleq,t) replaces C-A when Impulse Time Weighting is selected) - Graphical: Short LAeq, LCPeak - Measurement Run Time - Taktmaximal levels and integrated levels, and 3 and 5 seconds, Fast and Impulse time-weighted. #### 1:1 Octave Band View - Graphical display of L_F real time octave bands with the highest value for each band (updated every 1/16 seconds) - Graphical display of cumulative Leg for each octave band - Graphical display of cumulative LAeg for each octave band - Numeric display of Leq,1s real time octave bands (updated every 1 second) - Numeric display of cumulative Leg for each octave band - Numeric display of
cumulative LAeq for each octave band - Measurement Run Time #### 1:3 Octave Band View - Graphical display of L_F real time 1:3 octave bands with the highest value for each band (updated every 1/16 second) - Graphical display of cumulative Leg for each band - Graphical display of cumulative LAeq for each band - Numeric display of Leq,1s real time bands (updated every 1 second) - Numeric display of cumulative Leg for each band - Numeric display of cumulative LAeq for each band - Leg,LF and LAeg,LF (20 to 200 Hz) • Instruments with Tone Detection Capability display tonal bands in blue. #### Ln View Measures and stores statistical values during measurements Provides 14 Ln values to 0.1 dB resolution - L1.0 - L5.0 - L10.0 - L50.0 - L90.0 - L95.0 - L99.0 Lns 7-14 are user defined, turned off by default. Ln values are calculated using 1/16 second L_{AF} samples by default. Sampling rate, time weighting and frequency weighting can be changed in NoiseTools. Instruments with the "Statistical Levels x 2" capability provide a second set of 14 Ln values which can be configured within NoiseTools using independent sampling rate, time weighting and frequency weighting. #### Dose View | Integrator 1 | Integrator 2 | Integrator 3 | |---------------|---------------|---------------| | Run Time | Run Time | Run Time | | Leq1 | Leq2 | Leq3 | | LEP,d (Lex) | TWA | TWA | | Dose % | Dose % | Dose % | | Est Dose % | Est Dose % | Est Dose % | | Configuration | Configuration | Configuration | Measurement Run Time #### Moving Average View On instruments with firmware version 2.8 or above: - Page 1 - o LAeq,15min - Indicated in Red where LAeq,15min > 95 dB - Indicated in Yellow where LAeq,15min > 85 dB - Indicated in White where LAeq,15min ≤ 85 dB - o LAeq,15min Max - LAeq, 15min Max Date and Time - Page 2 - o LAeq,60min - Indicated in Red where LAeq,60min > 100 dB - Indicated in White where LAeq,60min ≤ 100 dB - LAeq,60min Max - LAeq,60min Max Date and Time - Page 3 - o LAS - LASMax - LASMax Date and Time - o L95 On instruments with firmware version below 2.8: - Page 1 - o LAeq,15min - Indicated in Red where LAeq, 15min > 95 dB - Indicated in Yellow where LAeq,15min > 85 dB - Indicated in White where LAeq,15min ≤ 85 dB - LASMax - o LA95 - Page 2 - o LAeq,60min - Indicated in Red where LAeg,60min > 100 dB - Indicated in White where LAeq,60min ≤ 100 dB - LASMax - o LA95 ### **Environmental View** All language selections other than German: - Page 1 - LAeq - LAymax * - o L10 - o L90 - Measurement run time - Page 2 (Displayed when the instrument is measuring) - o Graphical display of cumulative Leq for each 1:1 octave band - Page 3 (Displayed when the instrument is measuring) - o Graphical display of cumulative Leq for each 1:3 octave band - Page 4 - Graphical display Lf real time 1:1 octave bands with the highest value for each band (updated every 1/16 second) - Page 5 (Displayed when the instrument is measuring) - Graphical display Lf real time 1:3 octave bands with the highest value for each band (updated every 1/16 second) - Tonal noise detection when not set to the ISO option (instruments with Tone Detection Capability only). ## German Language: - Page 1 - LAeq - LAymax * - o L95 - o C-A (LCeg-LAeg) - o LAFT5eq - LAFT5eq-LAeq - Measurement run time - Page 2 (Displayed when the instrument is measuring) - o Graphical display of cumulative Leg for each 1:1 octave band - Page 3 (Displayed when the instrument is measuring) - Graphical display of cumulative Leg for each 1:3 octave band - Page 4 ^{*} The y time weighting of the LAymax can be changed on the View options / Time Weighting menu. - o Graphical display Lf real time 1:1 octave bands with the highest value for each band (updated every 1/16 second) - Page 5 (Displayed when the instrument is measuring) - Graphical display Lf real time 1:3 octave bands with the highest value for each band (updated every 1/16 second) - o Tonal noise detection when not set to the ISO option (instruments with Tone Detection Capability only). ^{*} The y time weighting of the LAymax can be changed on the View options / Time Weighting menu. ### **Stored Measurements** #### Sound Level View - Overall: LxyMax where x = A, C, Z; y = F, S, I (9 items) - Overall: LxyMin where $\mathbf{x} = A$, C; Z; $\mathbf{y} = F$, S, I (9 items) - Time History: LxyMax where x = A, C; y = F, S, I (6 items) - Measurement Run Time - Time & Date of Measurement Start - Time History data rate is user configurable in the global settings ### Leq View - Overall: LCPeak, LZPeak, LAPeak. LAeq, LCeq, LZeq (6 items). - Time History: LAeq, LCeq, LZeq - Time History: LCPeak, LZPeak, LAPeak - Time History: LAeql (also known as LAleq,t) - Time History data rate is user configurable in the global settings - Measurement Run Time - Time & Date of Measurement Start #### Dose View - Overall: Leq2, Leq3. (Lavg stored, TWA, % Dose & Est % Dose also available) - Time History: Leg2, Leg3 - Time History data rate is user configurable in the global settings - Measurement Run Time - Time & Date of Measurement Start - Integrator 1 values are stored in the Leq module #### 1:1 Octave Band View - Overall Leg for each octave band - Overall LAeg for each octave band - NR & NC values (CR:16xD version, CR:17xA,B & C versions) - Time History: Leq for each octave band (10 items) stored at the Global data rate (minimum duration of 1/16 seconds) - Measurement Run Time - Time & Date of Measurement Start ### 1:3 Octave Band View - Overall Leq for each octave band 36 items from 6.3 Hz to 20 kHz - Overall LAeq for each octave band 36 items from 6.3 Hz to 20 kHz - Leq,LF and LAeq,LF (20 to 200 Hz) - Time History: Leq for each 1:3 octave band. 36 items from 6.3 Hz to 20 kHz stored at the Global data rate (minimum duration of 1/16 seconds) - Measurement Run Time - Time & Date of Measurement Start #### Ln View - 14 Ln values for each measurement in Ln set #1 - 14 Ln values for each measurement in Ln set #2 (CR:171C & CR:172C) ## Moving Average View On instruments with firmware version 2.8 or above: - Page 1 - o LAeq,15min Max - LAeq,15min Max Date and Time - Page 2 - o LAeq,60min Max - LAeq,60min Max Date and Time - Page 3 - o LASMax - LASMax Date and Time - o L95 On instruments with firmware version below 2.8: - Page 1 - LASMax - o LA95 - Page 2 - LASMax - o LA95 ### Menu / Quick Settings The Quick Settings available are: UK: 3 dB, No Threshold, No Time Weighting, Criterion Level of 85 dB EU: 3 dB, No Threshold, No Time Weighting, Criterion Level of 85 dB #### OSHA HC & PEL Integrator 2: 5 dB, 80 dB Threshold, Slow Time Weighting, 90 dB Criterion Level Integrator 3: 5 dB, 90 dB Threshold, Slow Time Weighting, 90 dB Criterion Level #### OSHA HC & ACGIH Integrator 2: 5 dB, 80 dB Threshold, Slow Time Weighting, 90 dB Criterion Level Integrator 3: 3 dB, No Threshold, Slow Time Weighting, 85 dB Criterion Level #### MSHA HC & EC Integrator 2: 5 dB, 80 dB Threshold, Slow Time Weighting, 90 dB Criterion Level Integrator 3: 5 dB, 90 dB Threshold, Slow Time Weighting, 90 dB Criterion Level #### Custom Custom settings defined by the NoiseTools software ### Electrical Outputs #### **AC** Output The AC Output is provided on the 3.5 mm jack socket at the bottom of the instrument. Do not use a Stereo Jack Plug in this socket. Only use a 3.5 mm Mono Jack Plug. The AC output has four settings: a combination of High or Low levels and a 0 dB or +20 dB gain. Voltages and full scale levels are as follows: ### High Levels (70-140 dB) 0 dB gain 1.3 V_{pk-pk} (450 m V_{rms}) at full scale 140 dB +20 dB gain 1.7 V_{ok-pk} (600 m V_{rms}) at full scale 132 dB # Low Levels (20-90 dB) 0 dB gain 400 mV $_{pk-pk}$ (140 mV $_{rms}$) at full scale 90 dB +20 dB gain 1.3 V $_{pk-pk}$ (450 mV $_{rms}$) at full scale 90 dB The output is unweighted, i.e. Z-weighted. ### **AC Output Cables** The AC Output should be used with a ZL:174, ZL:177 or ZL:185 Cable. These cables are available from Cirrus Research plc or your local distributor. Do not use any other cable with the **optimus**. This may damage the instrument and invalidate your warranty. ### DC Output The DC Output is provided on the 18 Pin Multi-IO socket at the bottom of the instrument. The output is set to 25 mV/dB with LAF updated 16 times per second. ## **DC Output Cables** The DC Output is available using a ZL:174 Output Cable. This cable is available from Cirrus Research plc or your local distributor. Do not use any other cable with the **optimus**. This may damage the instrument and invalidate your warranty. #### Cables The **optimus** sound level meters can be used with a range of cables. The standard cables are listed below. ### **Microphone Extension Cables** - ZL:205 5 m Microphone Extension Cable - ZL:210 10 m Microphone Extension Cable - ZL:225 25 m Microphone Extension Cable ### **Input and Output Cables** - ZL:100 1 m USB Cable - ZL:171 **Optimus** power input cable, 2.1 mm Power Jack, 2 m - ZL:172 **Optimus** Printer Cable, 18-way to 6 way RJ12, 1 m - ZL:173 Optimus DPU-414 Printer Cable, 18-way to 9-way D male, 1 m - ZL:174 **Optimus** AC & DC Output, 18-way to 2 x Phono, 1 m - ZL:175 Optimus PC cable, 18-way to RS232 9-pin D female, 1 m - ZL:176 **Optimus** 12 V Battery pack cable 2 m to tinned ends with inline fuse - ZL:177 **Optimus** AC output cable, 3.5 mm Mono to 3.5 mm Stereo Jack, 2 m - ZL:179 **Optimus** cable for ZE:910 Isolator, 18-way to tinned ends, 1 m - ZL:180 **Optimus** Modem cable, 18-way to RS232 9-pin D male with 12 V Power Input 2.1 mm jack, 1 m - ZL:181 **Optimus** PC cable, 18-way to RS232 9-pin D female with 12V Power Input 2.1 mm jack, 1 m - ZL:182 **Optimus** Fujitsu Printer cable, 18-way to multiway, 1 m - ZL:183 **Optimus** all-purpose cable, 18-way to tinned ends, 2 m - ZL:184 Optimus Hirose HR30 Male to Male SR30, 1 m - ZL:185 Optimus AC output cable, 18-way to Phono, 1 m - ZL:186 **Optimus** USB Cable with Ferrite, USB A to USB B, 1.8 m ## **Acoustic Calibrator Information** This chapter
refers to the use of a Cirrus Research plc CR:514 or CR:515 Acoustic Calibrator. ### Switching on the Calibrator Press the Power Button on the end of the Calibrator to switch the unit on. The Indicator will illuminate to show that the unit is operating. The calibrator will automatically switch off after 5 minutes to preserve battery power. To switch off the calibrator manually, press the power button again and the indicator will extinguish to show that the unit is switched off. #### Permanent-on Mode For some applications there may be a need to have the calibrator switched on continuously. To allow for this, the calibrator can be turned on by pressing and holding the power button for three seconds. Release the button and the indicator will flash to show that the unit is in permanent-on mode. Press the power button to switch off the calibrator. ### Calibrating a Sound Level Meter. Push the microphone of the Sound Level Meter into the cavity at the end of the calibrator. Ensure the microphone is fully inserted into the cavity and is past the 'O' ring seals. The microphone should be parallel to the body of the calibrator. Also ensure that the small bleed-hole next to the microphone cavity is not blocked as this could cause damage to the microphone. Your **optimus** sound level meter will automatically make adjustments for the level produced by the acoustic calibrator and the microphone type fitted to the instrument. ### **Background Noise** In order for the calibrator to operate as intended, the ambient acoustic noise level should be no greater than 80 dB(A). #### Stabilisation In order for the sound pressure level and frequency to stabilise after switching the calibrator on when coupled to a microphone, a period of at least 3 seconds should be allowed before performing a calibration. ### Changing the Battery The CR:514 & CR:515 acoustic calibrators use a single 9 V alkaline battery. This type of battery is known as 6F22 or NEDA 1604. It is also commonly known as PP3. - 1. Unscrew the screw holding the battery cover on, using a coin or the keyring provided. - 2. The battery can now be eased out of its holder and replaced. The battery should be eased out terminal side first by pushing against the spring at the other end. Ensure that the battery is inserted with the correct polarity with the negative terminal at the contact with the larger cut out. ### Battery type The battery should be an alkaline battery, not an ordinary dry cell. The battery is 9 volts when new and will operate the calibrator down to 6.4 volts. When the battery voltage is below 6.6 volts but above 6.4 volts, the power LED will flash to indicate that the battery voltage is low. When the battery voltage is below 6.4 volts the calibrator will not turn on. A discharged battery may allow switch-on but will soon drop in voltage and indicate low battery or switch off. ## **Specifications** Frequency $1 \text{ kHz} \pm 1\%$ Sound Level 94 dB re $20 \mu Pa$ Standardisation CR:514 - IEC 60942:2003 Class 2 CR:515 - IEC 60942:2003 Class 1 Distortion Less than 2% Operating Humidity 25 to 90% Relative Humidity Operating Static Pressure 65 kPa to 108 kPa Operating Temperature -10°C to $+50^{\circ}\text{C}$ Storing Temperature -20°C to $+60^{\circ}\text{C}$ Effective Volume 6.19 \pm 0.2 cm³ Cavity Diameter 0.525 inch Battery 1 x 9 V 6F22 (NEDA 1604) Battery Life Approx. 15 Hours Continuous Use Battery Voltage 9 V Nominal (10 V Maximum, 6.4 V Minimum) Weight with Battery 185 g Dimensions 135 mm x \emptyset 48 mm ### **Technical Information** The normal mode of operation of the calibrator is with the unit switched on. When the LED indicates the unit is switched on this produces the greatest radio frequency emissions. The calibrator continues to function after exposure to contact discharges up to 4 kV and air discharges up to 8 kV, for both positive and negative voltages relative to earth ground. The calibrator conforms to IEC 60942:2003 for a modulated root-mean-square electromagnetic field strength of 10 V/m. The maximum susceptibility to power and radio frequency fields is with the cavity facing away from the emitter with the battery compartment facing the table, the antenna polarisation horizontal and the calibrator switched on. ### Free Field Correction When calibrating a microphone which is to be used for free field measurements, a small correction may be necessary to compensate for the difference between the microphone's free field response at 'zero degrees' or 'head-on' incidence and the pressure level generated by the calibrator. The correction is typically -0.3 dB for $\frac{1}{2}$ inch microphones (making the effective calibration level 93.7dB). Calibration corrections are listed below for the Cirrus Research plc $\frac{1}{2}$ inch capsules and three microphone capsules commonly used in Calibration Laboratories: ## Microphone Correction Values | Microphone Type | Calibration Correction | Effective Calibration Level | |-----------------|------------------------|-----------------------------| | MK:202 | -0.3 dB | 93.7 dB | | MK:215 | -0.3 dB | 93.7 dB | | MK:226 | -0.3 dB | 93.7 dB | | MK:224 | -0.3 dB | 93.7 dB | | B&K 4134 | 0 dB | 94.0 dB | | B&K 4180 | 0 dB | 94.0 dB | | B&K 4192 | 0 dB | 94.0 dB | ### Example An example of the procedure used to calculate the value for an MK:224 microphone is shown below : Level = 94.0 dB + Microphone Correction Level = 94.0 dB + (-0.3 dB) Level = 93.7 dB ## **Declarations** ## **EU Declaration of Conformity** Manufacturer: Cirrus Research plc Acoustic House, Bridlington Road Hunmanby, North Yorkshire, YO14 0PH United Kingdom **Equipment Description** The following equipment manufactured after 1st January 2017: CR:151 Sound Level Meter (A & B Versions) CR:152 Sound Level Meter (A & B Versions) CR:161 Sound Level Meter (A, B, C & D Versions) CR:162 Sound Level Meter (A, B, C & D Versions) CR:171 Sound Level Meter (0, A, B & C Versions) CR:172 Sound Level Meter (0, A, B & C Versions) CR:19x Sound Level Meter (All versions) CR:514 Acoustic Calibrator CR:515 Acoustic Calibrator Along with standard accessories According to: EMC Directive 2014/30/EU Low Voltage Directive 2014/35/EU RoHS Directive 2011/65/EU meet the following standards EN 61000-6-3:2007+A1:2011 Electromagnetic compatibility (EMC). Generic standards. Emission standard for residential, commercial and light-industrial environments EN 61000-6-1:2007 Electromagnetic compatibility (EMC). Generic standards. Immunity for residential, commercial and light-industrial environments Auxiliary Industry Standards EN 61672-1:2013 Electroacoustics – sound level meters EN 61260:1995 Octave-band filters EN 60942:2003 Sound calibrators Signed Dated 1st January 2017 mIZS Martin Williams Director # **Product Guarantee & Extended Warranty** 1. The period of the initial guarantee starts from the date of purchase, as a new instrument, from Cirrus Research plc or their formally approved distributors. The periods are as follows unless otherwise stated by Cirrus Research plc in writing: | Products manufactured by Cirrus Research plc | 24 months | |---|-------------------------| | Repairs | 3 months | | Replacement microphone capsules | 12 months | | Spare parts (excluding replacement microphone capsules) | 3 months | | Products manufactured by a third party (see clauses 12 & 14 | Based on the individual | | below) | manufacturer's warranty | 2. The initial guarantee covers all faults and accidental damage to the product. #### 3. Warranty extension If the product is returned to Cirrus Research plc or one of its Authorised Service & Calibration Centres for routine verification & calibration after the initial guarantee period, upon completion of the verification the product will be given an additional free one (1) year warranty. This must be done with a 6-week window of the anniversary date of shipment. This is limited to 3 weeks either side of the anniversary date of the shipment. It follows that if an instrument is routinely verified by Cirrus Research plc (or an Authorised Service & Calibration Centre) every year after the initial warranty period, the warranty is effectively continuous to a maximum of fifteen (15) years from the original date of purchase. There will be a charge for the verification (or calibration) of the equipment. #### 4. Buying back into the warranty Where the warranty has expired, the customer can buy back into the warranty scheme. This reactivates the warranty for a further 12 months and provides the same level of cover as for the initial period above. This must be purchased at the same time as a calibration or verification. The maximum period of any warranty, whether it had been extended or not, is 15 years from the original purchase date. This offer can only be redeemed once during the life of the instrument. 5. The initial guarantee, and any extended warranty is not transferrable and is provided to the original customer only. - 6. Where a product is returned for routine verification or calibration, the customer is responsible for all transportation, duty and other charges. - 7. The user shall be responsible for determining if the product is suitable for the use and that such use complies with any applicable laws, regulations or standards. - 8. The customer must notify Cirrus Research plc in writing of any claimed defect in the product immediately upon discovering it. - 9. Where an instrument is being returned under the guarantee or warranty, it must be returned to Cirrus Research plc without undue delay at the customer's risk with transportation charges prepaid. - 10. Where the product is deemed to be faulty due to manufacturing defects, Cirrus Research plc shall: - a. Repair or replace the defective products - b. Be given reasonable time by the customer to make such repairs or replacements - c. Return the product to the customer at Cirrus Research plc's expense -
11. Cirrus Research plc reserves the right to decline an instrument under the initial guarantee or extended warranty where; - a. The product has continued to be used after defect has been discovered - b. There is clear evidence of damage or misuse that is deemed to be more than minor accidental damage - c. The product has been modified or repaired by persons other than those authorised by Cirrus Research plc - d. The defect arises from the use of the product in conjunction with products or materials not reasonably contemplated by Cirrus Research plc - e. No fault is found with the product - 12. The initial guarantee or extended warranty does not extend to products or materials not supplied by or manufactured by Cirrus Research plc. Consumable items, including dry-cell and alkaline batteries are not covered by the initial guarantee or extended warranty. - 13. Where re-chargeable batteries are used as an integral part of the product design and the product is shipped with the batteries installed (for example the doseBadge⁵ Noise Dosimeter), the standard product guarantee and extended warranty applies provided that the user has used the correct charging instructions and has followed the charging regime stated in the product manual. - 14. No warranty is offered for used equipment unless a special arrangement is made and is confirmed in writing by Cirrus Research plc - 15. Cirrus Research plc reserves the right to amend or update these terms and conditions without notice. This warranty does not in any way reduce or affect the legal rights of the buyer and is in additional to any statutory rights. # Cirrus Research Offices The addresses given below are the Cirrus Research plc offices. Cirrus Research plc also have approved distributors and agents is many countries worldwide. For details of your local representative, please contact Cirrus Research plc at the address below. Contact details for Cirrus Research authorised distributors and agents are also available from the Internet Web site at the address shown below. #### Main Office Cirrus Research plc Acoustic House Bridlington Road Hunmanby North Yorkshire United Kingdom YO14 0PH Telephone: 0845 230 2434 +44 (0)1723 891655 Fax: +44 (0)1723 891742 E-mail: sales@cirrusresearch.com Web Site: www.cirrusresearch.co.uk #### Germany Cirrus Research plc Deutschland Arabella Center Lyoner Strasse 44 – 48 D-60528 Frankfurt Germany Tel: +49 (0)69 95932047 Fax +49 (0)69 95932049 Email: <u>vertrieb@cirrusresearch.de</u> Web: <u>www.cirrusresearch.de</u> #### Spain CIRRUS RESEARCH S.L. Travessera de Gracia, 62 4º 7ª 08006 Barcelona SPAIN Tel: (34) 933 622 891 Email: <u>info@cirrusresearch.es</u> Web: www.cirrusresearch.es #### Cirrus Environmental Unit 2 Bridlington Road Industrial Estate Hunmanby North Yorkshire YO14 0PH United Kingdom Tel: +44 (0) 1723 891722 Email: <u>sales@cirrus-environmental.com</u> Web: www.cirrus-environmental.com